

High School Science Virtual Learning

Chemistry Ionic Bonding May 19, 2020

High School Chemistry Lesson: [5/19/20]

Objectives/Learning Targets: Students will be able to explain ionic bonding.

Let's Get Started:

3.00 moles of N₂ and 4.00 moles of O₂ are placed in a 50.0 L container at a temperature of 27.0 $^\circ$ C.

- 1. What are the partial pressures (kPa) of N_2 and O_2 ?
- 2. What will the pressure (kPa) of the resulting mixture of gases be?

Let's Get Started: Answer Key

- 1. PV = nRT so... P = (nRT)/V
 - P = (3.00mol x 8.31 (L• kPa)/(mol•K) x 300K) / 50.0 L = 150 kPa
 - P = (4.00mol x 8.31 (L• kPa)/(mol•K) x 300K) / 50.0 L = 199 kPa
- 2. $P_{tot} = P_{N_2} + P_{O_2}$
 - = 150 kPa + 199 kPa = 349 kPa

Lesson Activity: Directions:

1. Read through and write down the important information in the following slides.

- An ionic compound is a compound composed of cations and anions.
 - Cations atom or group of atoms that have collectively lost electron(s); essentially positively charged
 - Generally metals
 - One exception is the ammonium ion (NH₄⁺) made up of a nitrogen and 4 hydrogen atoms
 - Anions atom or group of atoms that have collectively gained electron(s); essentially negatively charged
 - Generally non metals

- Although they are composed of ions, ionic compounds are electrically neutral.
 - Anions and cations have opposite charges and attract one another by means of electrostatic forces.
 - The electrostatic forces that hold ions together in ionic compounds are called **ionic bonds**.

• Properties of Ionic Compounds

- Most are crystalline solids at room temperature
- Have relatively high melting points and boiling points
- Can only conduct electricity when dissolved in water or molten

Wulfenite (PbMoO4)

Hematite (Fe₂O₃)

Cinnabar (HgS)

- Writing Formulas for Ionic Compounds
 - To write the formula of a binary ionic compound, first write the symbol of the cation and then the anion. Then add subscripts as needed to balance the charges.
 - A binary compound is composed of two elements.
 - For example, the ionic compound potassium chloride is composed of potassium cations (K⁺) and chloride anions (Cl⁻), so potassium chloride is a binary ionic compound.
 - The charge of each K^+ cation is balanced by the charge of each Cl^- anion.
 - The ions combine in a 1:1 ratio, so the formula for potassium chloride is KCl.

Lesson Activity: Directions:

1. Take notes as you watch the following video.

Links:

• Video: <u>lonic Bonding Introduction</u>

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions: Write the formulas for the following compounds:

- 1. Sodium phosphide
- 2. Magnesium nitrate
- 3. Lead (II) sulfite
- 4. Calcium phosphate
- 5. Ammonium sulfate
- 6. Copper (II) chloride
- 7. Manganese (IV) nitride
- 8. Potassium permanganate
- 9. Tin (II) sulfite
- 10. Vanadium (V) fluoride

Once you have completed the practice questions check with the answer key.

- Na₃P 1.
- $Mg(NO_3)_2$ 2.
- 3. $PbSO_3$
- 4. $Ca_3(PO_4)_2$
- 5. $(NH_{4})_{2}SO_{4}$ 6. CuCl₂
- 7.
- Mn₃N 8. KMnO,
- 9. SnSO₂
- 10. VF_5

More Practice:

Follow the links below to do more practice.

- 1. <u>Ionic Compound Practice</u>
- 2. Ionic Compound Formula Writing

Additional Practice: Click on the link below for additional practice. Quiz